INDEPENDENT ANIMAL FEED PROCESSING TO IMPROVE THE ECONOMY OF THE COMMUNITY IN SIMPANG VILLAGE, PASAMAN, WEST SUMATRA

Daimon Syukri*, Emil Salim2, Nika Rahma Yanti3 and Aninda Tifani Puari3

1Department of Agricultural Product Technology, Andalas University
2Department of Chemistry, Andalas University
3Department of Agricultural Engineering and Biosystem, Andalas University

*Corresponding author: dsyukri@ae.unand.ac.id

ABSTRACT

Background: The absence of a corn processing machine is one of the problems experienced by Aur Serumpun farmer groups at Nagari Simpang. Methodology: The team of community services from Andalas University handed over a corn grinder that can be used to process dry corn into animal feed. The corn milling machine delivered is an electric machine with a small capacity that can be used for small-scale production. Conclusion: Members of the farming group have expressed their gratitude for the procedure of transferring the grinder. The existence of this tool benefits the community significantly because it allows them to make their own feed and sell it to other villages at a lesser cost.

Keywords: corn processing, grinding machine, animal feed, community services

INTRODUCTION

The "aur serumpun" farming group in the Simpati area of Pasaman Regency, West Sumatra, has solely produced dry corn goods so far. Later, this product will be sold to large farmers for processing into feed. The amount of dry corn produced by the "Aur serumpun" farmer group is quite considerable, with weekly output exceeding 10 tons. According to discussions between the Andalas University community services team and farmers from the "Aur Serumpun" farmer association, many residents in the Simpati district also require corn-based animal feed. Farmers' cooperatives are frequently asked if they can provide animal feed products from the processing of dried corn. Corn is one of the best basic material for animal feed (Tanganyika and kassim, 2018; Jameel, 2019; Vu et al, 2019) As a result, using a machine to turn dry corn into animal feed can assist the "Aur Serumpun" farmer group diversify their corn output beyond just dry corn.

At this time in 2021, the community service team of Andalas University has developed a program to deliver an equipment for turning dry grain into animal feed. It is envisaged that, with this technology, the "Aur Serumpun" farmer group's independence in processing dry maize into animal feed will be established and expanded in the future.
METHODOLOGY

This activity was held from September 2021 to October 2021. The activity had started with intensive discussion between the community service team of Andalas University with the leader of farmer group “Aur Serumpun”. The discussion was held by online meeting.

The handover of the equipment (grinding machine) has done on 27th of October 2021 at the representative place of farmer group “Aur Serumpun” at Nagari Simpang, Pasama Regency. The installation process and a training on how to use the grinding machine were also completed at the time of the tool's handover to ensure that it could be used for the community's benefit.

RESULTS AND DISCUSSION

The most typical on-farm grinding machine is a grinder-mixer, which, as the name implies, grinds and mixes feed in the same unit. On their farms, many modern farmers utilize a grinder mixer to mill chicken feed. The key step is to ground the maize in a grinder to make little feed pellets. A grinder is a vertical machine that accepts ingredients at the top and pushes mixed feed out the bottom. A high-quality grinding machine (grinder) can achieve a more level grain distribution in the grinder, resulting in uniform feed production (Dabbour, 2015; Sidhu and Chavan, 2018).

The grinder that has been hand overed was a high-end manufacturer's tool. Several animal feed manufacturers have made extensive use of this instrument. The grinder that was submitted is an AGR-MD15 model. This machine has a feed production capability of up to 180 kg/h. This grinder is simple to operate and comes with a variety of sieves that may be used to measure the finished product. The process of installation can also be completed quickly and efficiently.

The efficiency of the equipment utilized was judged to be very satisfactory in experiments conducted by the Andalas University community service team and the chairman of the "Aur Serumpun" farmer group. When dried corn is used to make feed, no productivity loss occurred.
CONCLUSION

This Community Service activity was welcomed by resident of Nagari Simpang, Pasaman Regency. Members of the farmer group should be able to create feed items that can be sold and used in the community as a result of this activity. Because the manufacturing process is carried out autonomously, it is intended that the product's selling price would be reasonable, benefiting the local community as well. In the future, community service activities will focus on training in the production of feed products.

ACKNOWLEDGMENTS

The authors acknowledged the financial support from the institute of research and community Service of Andalas University for conducting this activity (Grant no. T/11/UN.16.17/PT.PKM.MUB/2021)

REFERENCES


